RELAÇÃO ENTRE PESOS E MEDIDAS DE FÊMEAS LEITEIRAS DO TIPO MANTIQUEIRA(1)

GUILHERME PAES GUARAGNA(2), BENEDICTO DO ESPÍRITO SANTO DE CAMPOS(2) e MARIA INÉS DE AQUINO BARBOSA(3)

RESUMO: Fêmeas do tipo mantiqueira foram pesadas (P) e medidas (perímetro toráxico - PT; altura - A e comprimento do corpo - CC), durante três anos, em duas épocas do ano, janeiro e julho, num total de 974 conjuntos de observações. As novilhas de um ano até o final da 1ª lactação eram filhas de 11 touros. As variáveis P, PT, A e CC foram analisadas pelo método dos quadrados mínimos cujo modelo matemático inclui os efeitos fixos de ano, época e efeitos lineares quadráticos e cúbicos de idade do animal e aleitatórios de touro e novilha dentro de touro. Não foram significativos os efeitos de época para peso e o efeito linear de idade para peso, perímetro, comprimento e altura. Os efeitos quadráticos e cúbicos de idade e os demais efeitos do modelo foram significativos para todas as características. Foram obtidas as seguintes correlações genéticas e fenotípicas: P-PT 0,970 e 0,782; P-CC = 0,837 e 0,403; P-A = 0,654 e 0,570; PT-CC = 0,850 e 0,385; PT-A = 0,736 e 0,553; CC-A = 0,687 e 0,443. A seleção para qualquer uma das características provoca ganhos nas demais, devido às correlações genéticas altas e positivas entre elas. PT foi a melhor medida para predizer o peso.

Termos para indexação: peso, medidas, gado mantiqueira.

Body weight, length, height and chest perimeter in dairy heifers of mantiqueira type

SUMMARY: Females of Mantiqueira type were weighted (P) and had their chest perimeter (PT), height (A) and body length (CC), measured during three years, two times a year (January and July), resulting in a total of 974 observations. The heifers were daughters of 11 bulls. The variables P, PT, A and CC were analysed by the least squares method using models with the fixed effects of year, season and linear, quadratic and cubic effects of age of the animal and the random effects of sire and heifers within sire. Except for the effects of season for weight, and the linear effects of age, for weight, perimeter, length and height, all fixed effects were significant (P < 0.05). Genetic and phenotypic correlations were: 0.970 and 0.782 for P and PT; 0.837 and 0.403 for P and CC; 0.654 and 0.570 for P and A; 0.850 and 0.385 for PT and CC; 0.736 and 0.553 for PT and A and 0.687 and 0.443 for CC and A. Selection for any of the traits, results in gains in the others, due to high and positive genetic correlations. PT was the best measurement to estimate body weight.

Index terms: body weight, length, height, chest perimeter, dairy heifers, mantiqueira type.

(2) PUC de Instituto de Zoologia.
(3) Biologista estagiária.

101
INTRODUÇÃO

As medidas do corpo têm grande interesse para a Barimetria, ou seja, a parte do estudo dos animais que procura estabelecer o peso vivo dos animais através de fórmulas que se baseiam em diferentes medidas do corpo, INCHAUSTI & TAGUE (1957). Tanto o peso vivo estimado ou observado como as medidas do corpo têm enorme aplicação no dia-a-dia da criação. Este interesse vai desde a avaliação do crescimento e do estado nutricional do animal à correta alimentação, à aplicação de remédios e parasitídeas e no estabelecimento do valor do animal para corte.

As medidas também podem auxiliar no melhoramento da produção de leite. JOHANSSON (1961), comentando a relação entre tamanho do corpo, desenvolvimento muscular e produção de leite, concluiu que a produção de leite é positivamente relacionada com a taxa de crescimento e com o tamanho do esqueleto, mas negativamente correlacionada com o desenvolvimento muscular.

No tocante a crescimento, as diferentes raças leiteiras apresentam comportamento diferente tanto nas curvas obtidas com peso como na relação entre medidas e o peso vivo dos animais. HENDERSON & REAVES (1954), confeccionaram tabelas de crescimento normal específicas para as raças Holandesa, Jersey, Guernsey e Ayrshire com valores de peso e altura por idade para cada raça. GAINES et al. (in BRUQUET Jr., 1967), estabeleceram uma fórmula para as raças Holandesa, Jersey, Guernsey e Ayrshire que estima o peso a partir do perímetro torácico:

\[W = 0,342 (G + g)^{1,85} \]

onde

\[W = \text{peso em libras} \]

\[G = \text{perímetro torácico em polegadas} \]

\[g = \text{fator de correção para idade e raça}. \]

GUARAGNA et al. (1988b), estudando a Zoometria de vacas mantiqueira e holandesa da Estação Experimental de Zootecnia de Pindamontengaba, concluíram que os dois tipos de animais eram estatisticamente semelhantes no comprimento e largura do corpo, no perímetro torácico e no peso vivo. No entanto diferiam estatisticamente nas medidas em altura, onde as vacas holandesas eram sempre maiores. Os valores médios encontrados no estudo de peso para as vacas adultas mantiqueira e holandesa foram: Peso 485,9 e 474,5 Kg; Altura da corna 128,8 e 131,9 cm; Comprimento do corpo 149,8 e 150,0 cm e Perímetro torácico 189,4 e 188,0 cm. TOUCHBERRY (1951), estudando 187 pares de mães e filhas da raça Holandesa numa base intra-touro e aos 3 anos de idade obteve altas correlações genéticas entre peso e 5 diferentes medidas. O autor concluiu que selecionando para maior dimensão qualquer das medidas acarretará aumento nas demais. Os valores das correlações fenotípica e genética entre peso e as três medidas do estudo foram: P e PT = 0,808 e 0,883; P e CC = 0,701 e 0,831; P e A = 0,534 e 0,698; PT e CC = 0,583 e 0,555; PT e A = 0,634 e 0,646 e CC e A = 0,670 e 0,801. Neste mesmo trabalho o autor encontrou as seguintes estimativas de herdabilidade: 0,37 para peso, 0,61 para perímetro, 0,58 para comprimento do corpo e 0,73 para altura.

BLACKMORE et al. (1958), utilizando os mesmos métodos de TOUCHBERRY (1951), em 334 pares de dados de mães e filhas da raça Holandesa, obtiveram para a idade de 2 anos as seguintes correlações genéticas: 0,84 entre P e PT; 0,70 entre P e CC; 0,70 entre P e A; 0,61 entre PT e CC; 0,79 entre PT e A e 0,69 entre CC e A e os coeficientes de herdabilidade estimados pela regressão mãe-filha intra-touro foram: 0,53 para P; 0,55 para PT; 0,63 para CC e 0,86 para A.

O presente trabalho visou obter, para o gado mantiqueira, as estimativas de herdabilidade e correlação genética e fenotípica entre peso vivo e medidas do corpo do animal, bem como obter equações que permitissem estimar o peso através das medidas do corpo, para auxiliar em programas de criação e melhoramento genético deste ecotipo.

MATERIAL E MÉTODOS

Os dados do presente trabalho foram obtidos dos animais mantiqueiras da Estação Experimental de Zootecnia de Pindamontengaba criados na Unidade Experimental de Seleção do tipo mantiqueira. Nesta unidade os animais são manejados por categoria: novilhas de sobre-anos, em cobertura, prenhes e em lactação, em unidades rotacionais de pastagens com mais de 5 pastos. Desta forma a predominância da alimentação das novilhas, o ano todo, provém da forragem dos pastos, o que confere aos animais uma velocidade de crescimento modesta. Durante a lactação recebem ração concentrada compatível com a produção leiteira.

O histórico deste gado, bem como as condições de manejo, clima e solo, estão descritos em GUARAGNA et al. (1988a).

Foram estudados 974 conjuntos de informações de peso, perímetro torácico, comprimento do corpo e altura de 250 novilhas do tipo mantiqueira, filhas de 11 touros, durante 3 anos e em duas épocas do ano, janeiro e julho. Durante os 3 anos do presente trabalho e em janeiro e julho de cada ano todos os animais foram pesados e medidas conforme o seguinte procedimento: o peso em quilogramas (P) foi tomado em balança para pesagem
individual de bovinos com capacidade até de 1.000 Kg; o perímetro torácico em centímetros (PT), foi tomado com fita métrica apropriada contornando o tórax, passando pelo cilindro e de forma perpendicular em relação à linha do dorso; a altura em centímetros (A) do animal, foi tomada com bastão barimétrico, estando os animais em superfície plana e em posição de aprumos corretos dos membros e a medida obtida na vertical do ponto mais alto da região denominada garrote ou cerneilha ao solo e o comprimento do corpo (CC) também foi tomado em centímetro com bastão barimétrico, estando o animal em superfície plana e em posição de aprumos perfeitos, sendo a medida efetuada horizontalmente da ponta de espádua ou encontro à ponte de nádegas ou tuberosidade isquiática.

O número de medidas repetidas no mesmo animal, nos diferentes anos e épocas, variaram de 6, para os que iniciaram o trabalho no lote de sobre-ano, a 2 para os que estavam em primeira lactação à mesma época.

Tal fato se deve à constante entrada de animais de sobre-ano e a saída de animais que terminaram a primeira lactação, da Unidade Experimental de Seleção onde se desenvolveu o trabalho.

Os pesos e medidas, a codificação para ano e época, a idade em meses à época da medição, os números de registro dos animais e de seus pais e data de nascimento, foram digitados para posterior computação eletrônica.

Além das análises de variância das diferentes variáveis dependentes, foram estimadas as correlações genéticas e fenotípicas entre as variáveis dependentes e os componentes da regressão destas variáveis entre si e em função da idade dos animais.

Nas análises estatísticas foi usado o programa LSML (mixed model least squares and maximum likelihood computer program) descrito por HARVEY (1977). Foi selecionado o modelo IV (MTY = 04) que contém um conjunto de efeitos aleatórios de classificação cruzada (teusos) sem interação e um conjunto de efeitos aleatórios animais naquele, também sem interação. O presente modelo, descrito a seguir, foi utilizado, devido ao fato de que as novilhas eram avaliadas em várias épocas.

\[y_{ijkl} = \mu + a_i + b_{ij} + f_k + e_{ijkl} \] onde:

- \(y_{ijkl} \) = valor de cada variável dependente: P, PT, CC e A;
- \(\mu \) = média geral;
- \(a_i \) = efeito de touro (aleatório);
- \(b_{ij} \) = efeito de novilha dentro do touro (medidas repetidas de um mesmo animal, aleatório);
- \(f_k \) = efeitos fixos;
- \(e_{ijkl} \) = erro aleatório.

No conjunto de efeitos fixos foram incluídos os efeitos de ano e época de avaliação e idade da novilha em meses, com os efeitos linear, quadrático e cúbico.

As estimativas dos coeficientes de herdabilidade e das correlações genéticas e fenotípicas foram feitas utilizando os componentes de variância estimados pelo modelo, utilizando o método de correlação entre meio-irmãs paternas de acordo com o programa de HARVEY (1977).

Para a obtenção das equações de regressão do peso em função do perímetro torácico, comprimento do corpo e altura, foi usado o MODELO I (MTY= 01) do mesmo autor:

\[y_{ij} = \mu + f_i + e_{ij} \] onde:

- \(y_{ij} \) = peso de cada novilha;
- \(f_i \) = conjunto de efeitos fixos definidos como ano e época da medida e regressão linear, quadrática e cúbica de cada medida (PT ou CC ou A);
- \(e_{ij} \) = erro aleatório.

RESULTADOS E DISCUSSÃO

Os valores médios obtidos para estes dados referem-se a uma novilha com 36,34 meses com 352,38 kg de peso e desvio padrão de 100,61 Kg; 165,18 cm de perímetro torácico e desvio padrão de 17,93 cm; 128,16 cm de comprimento do corpo com desvio padrão de 12,25 cm e altura de 115,93 não com desvio padrão de 8,08 cm.

As análises de variância do peso (P), perímetro torácico (PT); comprimento do corpo (CC) e altura da cerneilha (A), onde se incluíram os efeitos aleatórios de touro e novilhas dentro de touro e os efeitos fixos de ano, estação e idade em meses do animal como regressão linear, quadrática e cúbica estão no quadro 1.

Quadro 1. Análises de variância do peso (P), perímetro torácico (PT), comprimento do corpo (CC) e da altura da cerneilha (A) de novilhas mantiqueras

<table>
<thead>
<tr>
<th>C.V.</th>
<th>G.L.</th>
<th>Quadrados médicos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Peso</td>
</tr>
<tr>
<td>Touro</td>
<td>10</td>
<td>31703,31**</td>
</tr>
<tr>
<td>Nov./Touro</td>
<td>249</td>
<td>6053,77**</td>
</tr>
<tr>
<td>Ano</td>
<td>2</td>
<td>17671,43**</td>
</tr>
<tr>
<td>Época</td>
<td>1</td>
<td>2896,88</td>
</tr>
<tr>
<td>Id. B.Linear</td>
<td>1</td>
<td>944,73</td>
</tr>
<tr>
<td>Id. B.Quadrático</td>
<td>1</td>
<td>15583,33**</td>
</tr>
<tr>
<td>Id. B.Cúbico</td>
<td>1</td>
<td>87732,97**</td>
</tr>
<tr>
<td>Resíduo</td>
<td>708</td>
<td>1084,61</td>
</tr>
</tbody>
</table>

Obs: *P < 0,05, ** *P < 0,01
As diferenças entre anos e épocas influenciam o desenvolvimento dos animais em maior ou menor intensidade, à medida que são manejados em regime de pastagem ou em confinamento. No presente caso, as novilhas de todos os lotes permaneceram o ano todo em pastagem e no inverno recebiam suplementação volumosa no próprio pasto. Pela análise de variância verifica-se que a época não foi importante efeito no peso ao passo que para as medidas foi importante estatisticamente. Este fato é de difícil explicação uma vez que teoricamente o peso deveria ser mais influenciado pelas diferenças causadas pelo clima nas pastagens e na nutrição animal do que as medidas do corpo. Já o efeito de ano foi importante para todas as características.

Verificando o quadro 2, nota-se que as médias de peso e das medidas foram maiores em julho do que em janeiro e foram maiores a cada ano em relação ao ano anterior. Tal ocorrência talvez se deva ao fato de que a cada época e anos subsequentes os animais estiavam maiores e os novos animais que entraram no trabalho não balancearam este efeito.

Quadro 2. Valores de médias, por quadrados mínimos, de peso e medidas por ano e época

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>N.</th>
<th>Peso</th>
<th>Per.Tor.</th>
<th>Comp.</th>
<th>Altura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>296</td>
<td>313,6</td>
<td>157,4</td>
<td>120,9</td>
<td>110,6</td>
</tr>
<tr>
<td>2</td>
<td>359</td>
<td>375,4</td>
<td>169,7</td>
<td>130,8</td>
<td>116,7</td>
</tr>
<tr>
<td>3</td>
<td>319</td>
<td>412,8</td>
<td>178,7</td>
<td>140,0</td>
<td>125,4</td>
</tr>
<tr>
<td>Epoca Jan.</td>
<td>477</td>
<td>359,8</td>
<td>166,6</td>
<td>127,8</td>
<td>116,6</td>
</tr>
<tr>
<td>Jul.</td>
<td>497</td>
<td>374,7</td>
<td>179,6</td>
<td>133,4</td>
<td>118,6</td>
</tr>
<tr>
<td>Média Geral</td>
<td>974</td>
<td>367,3</td>
<td>168,6</td>
<td>130,6</td>
<td>117,6</td>
</tr>
</tbody>
</table>

O efeito significativo de novilhazado em torno era de se esperar, já que se trata de dados repetidos no mesmo animal, de tal forma que os últimos valores tendem a ser maiores que os anteriores, principalmente na fase de crescimento.

O efeito significativo de torno demonstra que há variabilidade genética aditiva, ou seja, os touros têm potencial diferente de crescimento e transmitem estas diferenças às suas progênesis.

No quadro 3, estão os valores das correlações genéticas e fenotípicas entre as características peso e medida e os coeficientes de hereditabilidade estimados pela correlação entre meio-irmãs paternas.

A medida que mais se correlaciona com o peso, tanto genética como fenotipicamente, é o perimetro torácico, cujos valores foram de 97,9% e 78,2% respectivamente. Desta forma, conclui-se que a maior parte dos genes que favorecem o crescimento em peso também o fazem em perimetro torácico.

As medidas de comprimento do corpo e altura apresentaram boa estimativa de correlação genética com o peso, 83,7% e 65,4% respectivamente, sendo que as correlações fenotípicas foram inferiores (40,3% e 57,0%) para ambas características. Desta forma a altura foi a característica que menos se relacionou geneticamente com o peso, mas não fenotipicamente.

Comparando os dados do presente trabalho com os encontrados por TOUCHBERRY (1951) e BLACKMORE et al. (1958), verifica-se que as correlações genéticas entre peso e perímetro foram maiores nos três trabalhos e a correlação entre peso e comprimento do corpo e peso e altura foram o segundo e o último em valores da estimativa de correlação genética. No entanto, a estimativa de correlação genética entre o peso e o perímetro torácico do presente trabalho foi muito maior que as daqueles autores, talvez pelas diferenças entre as metodologias utilizadas. De qualquer forma, a conclusão de TOUCHBERRY (1951), de que selecionando animais de maior dimensão em qualquer das medidas, acarretará aumento de tamanho nas demais, é válida para os resultados aqui obtidos. Tal fato se explica pelas estimativas de correlações genéticas de grande magnitude encontradas, demonstrando que elevado número de genes são responsáveis concomitantemente pelas características estudadas.

As correlações entre as medidas são de menor interesse do que entre medidas e peso, no entanto, deve-se destacar o fato do perímetro torácico se correlacionar mais geneticamente com a altura do que o peso, o que está de acordo com os dados encontrados por BLACKMORE et al. (1958).

Um segundo conjunto de análises de variância foi levado a efeito, utilizando modelos fixos (modelo 1 de Harvey 1977), onde se incluíram o peso e medidas como...
variáveis dependentes e os efeitos fixos de ano, época e a idade como regressão linear, quadrática e cúbica, como variáveis independentes.

Foram também estudados os efeitos simples de perímetro torácico, de comprimento do corpo e de altura como regressão linear, quadrática e cúbica sobre o peso para se obter as equações de regressão (quadro 4) que permitem estimar o peso em função das diversas medidas.

Quadro 4. Equações de regressão de pesos e medidas em função de idade e de peso em função de medidas do corpo de novilhas manteiqueiras

TYP	-0.040202X^3-0.075630X^2+0.100403X-0.0779
YPT	1.482318-1.008213X-0.360077
YG	-0.0469592X-0.035460X^2+0.000093X-0.0779
YAT	-2.374444+0.1120XPT+0.0011XPT^2-0.16510
TP	1.3510494+0.052320X+0.0204XG+0.155953

F = Peso em quilogramas
I = Idade em meses
PT = Perímetro torácico em centímetros
CC = Comprimento do corpo em centímetros
A = Altura em centímetros

No quadro 5 estão o peso, o perímetro torácico, o comprimento do corpo e a altura de novilhas manteiqueiras em função da idade, estimados a partir das equações do quadro 4.

Quadro 5. Peso e medidas em diferentes idades de novilhas manteiqueiras criadas em regime de pastagem

<table>
<thead>
<tr>
<th>Idade em meses</th>
<th>Peso (kg)</th>
<th>Perímetro torácico (em cm)</th>
<th>Comprimento do corpo (em cm)</th>
<th>Altura (em cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>185,776</td>
<td>132,446</td>
<td>107,456</td>
<td>99,824</td>
</tr>
<tr>
<td>15</td>
<td>208,026</td>
<td>137,768</td>
<td>111,528</td>
<td>105,456</td>
</tr>
<tr>
<td>18</td>
<td>232,419</td>
<td>142,902</td>
<td>115,237</td>
<td>106,674</td>
</tr>
<tr>
<td>21</td>
<td>256,600</td>
<td>147,852</td>
<td>118,597</td>
<td>109,462</td>
</tr>
<tr>
<td>24</td>
<td>279,451</td>
<td>152,540</td>
<td>121,626</td>
<td>111,870</td>
</tr>
<tr>
<td>27</td>
<td>302,346</td>
<td>157,011</td>
<td>124,339</td>
<td>113,922</td>
</tr>
<tr>
<td>30</td>
<td>325,677</td>
<td>161,228</td>
<td>126,734</td>
<td>115,680</td>
</tr>
<tr>
<td>33</td>
<td>345,758</td>
<td>165,176</td>
<td>128,885</td>
<td>117,147</td>
</tr>
<tr>
<td>36</td>
<td>367,422</td>
<td>168,838</td>
<td>130,750</td>
<td>118,264</td>
</tr>
<tr>
<td>39</td>
<td>386,823</td>
<td>172,198</td>
<td>132,364</td>
<td>119,365</td>
</tr>
<tr>
<td>42</td>
<td>404,733</td>
<td>175,240</td>
<td>133,743</td>
<td>120,181</td>
</tr>
<tr>
<td>45</td>
<td>420,925</td>
<td>177,947</td>
<td>134,904</td>
<td>120,846</td>
</tr>
<tr>
<td>48</td>
<td>435,174</td>
<td>180,304</td>
<td>135,864</td>
<td>121,390</td>
</tr>
<tr>
<td>51</td>
<td>447,251</td>
<td>182,294</td>
<td>136,638</td>
<td>121,848</td>
</tr>
<tr>
<td>54</td>
<td>456,913</td>
<td>183,901</td>
<td>137,242</td>
<td>122,251</td>
</tr>
<tr>
<td>57</td>
<td>463,987</td>
<td>185,109</td>
<td>137,692</td>
<td>122,632</td>
</tr>
<tr>
<td>60</td>
<td>468,191</td>
<td>185,901</td>
<td>138,036</td>
<td>123,022</td>
</tr>
</tbody>
</table>

Na figura 1, tem-se a curva de crescimento para as características de peso e perímetro torácico. Nota-se que há uma ligeira diferença na curva do crescimento em peso e em perímetro torácico. Tal fato leva a uma relação não linear entre o peso e o perímetro torácico, como se vê na figura 2.

Figura 1. Peso e perímetro torácico de novilhas manteiqueiras em função da idade

Figura 2. Peso em função do perímetro torácico de novilhas manteiqueiras

No quadro 6 estão os valores de medida em centímetros do perímetro torácico e o peso estimado pela equação de regressão de terceiro grau mencionada no quadro 4.

Quadro 6. Peso (kg) estimado a partir do perímetro torácico (cm) para novilhas manteiqueiras criadas a pasto

<table>
<thead>
<tr>
<th>Cm</th>
<th>Peso em função do per. torácico</th>
<th>Cm</th>
<th>Peso em função do per. torácico</th>
<th>Cm</th>
<th>Peso em função do per. torácico</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>181,430</td>
<td>151</td>
<td>265,094</td>
<td>176</td>
<td>412,979</td>
</tr>
<tr>
<td>126</td>
<td>181,951</td>
<td>152</td>
<td>270,452</td>
<td>177</td>
<td>418,782</td>
</tr>
<tr>
<td>127</td>
<td>182,740</td>
<td>153</td>
<td>275,068</td>
<td>178</td>
<td>424,518</td>
</tr>
<tr>
<td>128</td>
<td>183,544</td>
<td>154</td>
<td>281,544</td>
<td>179</td>
<td>430,179</td>
</tr>
<tr>
<td>129</td>
<td>183,097</td>
<td>155</td>
<td>287,094</td>
<td>180</td>
<td>435,738</td>
</tr>
<tr>
<td>130</td>
<td>186,653</td>
<td>156</td>
<td>292,791</td>
<td>181</td>
<td>441,230</td>
</tr>
<tr>
<td>131</td>
<td>188,450</td>
<td>157</td>
<td>298,569</td>
<td>182</td>
<td>446,648</td>
</tr>
<tr>
<td>132</td>
<td>190,483</td>
<td>158</td>
<td>304,411</td>
<td>183</td>
<td>451,944</td>
</tr>
<tr>
<td>133</td>
<td>192,745</td>
<td>159</td>
<td>310,310</td>
<td>184</td>
<td>457,133</td>
</tr>
<tr>
<td>134</td>
<td>195,220</td>
<td>160</td>
<td>316,260</td>
<td>185</td>
<td>462,207</td>
</tr>
<tr>
<td>135</td>
<td>197,930</td>
<td>161</td>
<td>322,254</td>
<td>186</td>
<td>467,161</td>
</tr>
<tr>
<td>136</td>
<td>200,839</td>
<td>162</td>
<td>328,283</td>
<td>187</td>
<td>471,987</td>
</tr>
<tr>
<td>137</td>
<td>203,931</td>
<td>163</td>
<td>334,348</td>
<td>188</td>
<td>476,960</td>
</tr>
<tr>
<td>138</td>
<td>207,259</td>
<td>164</td>
<td>340,433</td>
<td>189</td>
<td>481,251</td>
</tr>
<tr>
<td>139</td>
<td>210,756</td>
<td>165</td>
<td>346,549</td>
<td>190</td>
<td>485,636</td>
</tr>
<tr>
<td>140</td>
<td>214,436</td>
<td>166</td>
<td>352,656</td>
<td>191</td>
<td>490,857</td>
</tr>
<tr>
<td>141</td>
<td>218,292</td>
<td>167</td>
<td>358,776</td>
<td>192</td>
<td>493,977</td>
</tr>
<tr>
<td>142</td>
<td>222,318</td>
<td>168</td>
<td>364,893</td>
<td>193</td>
<td>497,030</td>
</tr>
<tr>
<td>143</td>
<td>226,507</td>
<td>169</td>
<td>371,005</td>
<td>194</td>
<td>501,650</td>
</tr>
<tr>
<td>144</td>
<td>230,852</td>
<td>170</td>
<td>377,100</td>
<td>195</td>
<td>505,319</td>
</tr>
<tr>
<td>145</td>
<td>235,347</td>
<td>171</td>
<td>383,172</td>
<td>196</td>
<td>509,692</td>
</tr>
<tr>
<td>146</td>
<td>239,986</td>
<td>172</td>
<td>389,217</td>
<td>197</td>
<td>511,791</td>
</tr>
<tr>
<td>147</td>
<td>244,767</td>
<td>173</td>
<td>395,227</td>
<td>198</td>
<td>514,783</td>
</tr>
<tr>
<td>148</td>
<td>249,665</td>
<td>174</td>
<td>401,194</td>
<td>199</td>
<td>517,563</td>
</tr>
<tr>
<td>149</td>
<td>254,694</td>
<td>175</td>
<td>407,118</td>
<td>200</td>
<td>520,323</td>
</tr>
</tbody>
</table>

105
Comparando os dados do quadro 6 com os dados obtidos por GAINES et al. (in BRIQUET Jr, 1967) conclui-se que utilizando o fator de correção (g) igual a zero desta fórmula, as estimativas por ambos os métodos são bastante semelhantes para medidas em torno de 170cm de perímetro torácico, aproximadamente 370kg. Porém, para medidas um pouco acima disso, o peso estimado pela regressão passa a ser bem maior que o da fórmula de GAINES et al. (in BRIQUET Jr, 1967) e para medidas abaixo, o da fórmula tende a ser bem maior do que o da regressão. Desta forma, verifica-se que a fórmula de GAINES et al. (in BRIQUET Jr, 1967), indicada para as raças Jersey, Guernsey, Ayrshire e Holandesa é inadequada para o gado mantiqueira.

Comparando os dados de idade, peso e altura do quadro 5 com as tabelas de HENDERSON & REAVES (1954), verificamos que para as idades abaixo de 36 meses, os pesos e altura das novilhas mantiqueiras estão abaixo das raças europeias, mesmo das pequenas como a Jersey. Aos 4 anos os valores para peso superam aos da raça Jersey e se aproximam de alguns da Guernsey e da Ayrshire, segundo aqueles autores. Mas tanto à esta idade como às idades mais jovens para um mesmo peso do corpo, as alturas foram sempre inferiores a de todas as das raças Holandesa, Ayrshire, Jersey e Guernsey, o que demonstra que o Mantiqueira um animal mais baixo, proporcionalmente ao seu peso, do que as principais raças europeias para leite. Tal conclusão também está de acordo com o observado por GUARAGNA et al. (1983a), ao estudar peso e medidas de vacas adultas mantiqueiras em comparação às holandesa.

CONCLUSÕES

O estudo de peso e medidas de novilhas de um ano ao término da primeira lactação, permite as seguintes conclusões:

1. O peso e medidas de novilhas mantiqueira demonstraram correlações genéticas altas e positivas, permitindo-se afirmar que qualquer modificação causada por seleção em uma delas acarretará modificação nas demais.

2. O perímetro torácico, além de ser de fácil obtenção, foi a medida de maior correlação genética e fenotípica com o peso 97,0% e 78,2%, respectivamente e, portanto, indicada para estimar o peso na impossibilidade de pesar o animal, utilizando a equação de regressão ou o quadro 6 do presente trabalho.

3. Fórmulas para estimar o peso das raças leiteiras europeias a partir do perímetro torácico e altura parecem não ser adequadas para o gado mantiqueira criado em regime de pastagens tropicais, possivelmente devido às características morfológicas, específicas deste grupo genético, que se apresenta mais baixo em altura proporcionalmente ao seu peso em relação às vacas leiteiras europeias.

REFERÊNCIAS BIBLIOGRÁFICAS

